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The evolution of a three-dimensional grain boundary network is calculated in terms of a modified version of
the classic theory of Hillert [M. Hillert, Acta Metall. 13, 227 (1965)]. This has been extended beyond the mean
field approximation to account for the size dependence of the incoming flux to grains embedded in the network.
The prediction for the scaling distribution of grain sizes shows good agreement with that observed in Potts
model simulations. At small volumes the distribution follows a power-law behavior, whereas at larger volumes

it falls exponentially.

PACS number(s): 05.70.Ln, 81.35.+k, 81.10.Jt, 61.50.Cj

Grain growth in polycrystalline materials has inspired
several theoretical attempts to describe the network evolution
[1]. The fundamental interest has arisen from the observed
scaling behavior of the grain size distribution during normal
grain growth. Progress towards an understanding of this phe-
nomenon has resulted from the study of Potts model simula-
tions in both two and three dimensions [2,3]. The two-
dimensional case has traditionally been more accessible
because of the topological rules that govern the network
[4,5]. Von Neumann’s law states that the growth of a grain in
two.dimensions depends only on the number of sides [6], and
Lewis’s law relates the average number of sides of a grain to
its scaled area [7]. The combination of these leads to a good
description of the scaling distribution of grain areas in the
network [8]. However, no such laws exist for the three-
dimensional grain boundary network, although some have
been conjectured [9—11]. This is one of the reasons why a
fundamental description of the grain growth process in three
dimensions is lacking. It is the purpose of this communica-
tion to provide such a description.

One of the classic theories on the statistics of grain
growth is that of Hillert [12]. He derived the grain size dis-
tribution from considerations of the average growth rate of a
grain within a network whose evolution is driven by capil-
larity. However, his predicted scaling distribution of grain
sizes does not compare well with that observed experimen-
tally or in the Potts simulations. This is particularly true for
the two-dimensional simulation [2]. Recent analysis of this
Potts simulation has shown that this is due to the use of a
mean field approximation and that this can be corrected by
employing what I call the randomly connected bubble model
[8]. In this current work the same model is applied to the
three-dimensional system. It will be shown that this leads to
a grain volume distribution that has good agreement with the
simulation data and, by implication, with experimental ob-
servations. In particular, it is found that in the small volume
limit the distribution follows a power law, but it then de-
creases exponentially at larger scaled volumes.

Before introducing any modifications I will first review
Hillert’s theory [12]. His expression for the statistically av-
eraged growth rate of a grain with radius » embedded in the
grain boundary network is

dr o 1 1 .
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where M is the grain boundary mobility and o is the free
energy per unit area. The dimensionless parameter a~1 is
included because the grains are not perfect spheres but in-
stead are polyhedra. One may assume that « is the same for
all grains regardless of size because of the scaling behavior
observed in the network evolution. Note how the compli-
cated issue of the network topology does not arise in this
formulation. This is a distinct advantage when one wishes to
look at the three-dimensional network as mentioned above.

In Eq. (1) the critical radius r.,.(¢), above which grains
grow rather than shrink, is calculated to be % times the aver-
age radius 7(¢) for a three-dimensional network. Thus (1) has
the following mean field interpretation. The grain is shrink-
ing under the action of surface energy minimization, and its
radius of curvature is proportional to r. In addition, the grain
receives an inward flux from its shrinking neighbors. Assum-
ing that the grains are distributed randomly throughout the
network one might expect that, on average, this flux is the
same for all grains independent of size. The value of the
critical radius r, is determined by the condition that the total
volume of the system is conserved. However, this mean field
approximation is wrong, because of two neighbors it is the
smaller that will shrink, so remaining convex while the larger
is concave [8]. Hence the statistically averaged inward flux is
not the same for all grains and does depend on the grain size.
Grains much smaller than the average r obviously will have
very few neighbors smaller than themselves, and so receive
little inward flux. On the other hand, for large grains, nearly
all their neighbors will shrink to contribute more inward flux
than the mean field predicts. The growth rate (1) thus under-
estimates the rate at which small grains shrink and the rate at
which large ones grow [13]. These observations will now be
used to modify Hillert’s theory and create the randomly con-
nected bubble model for a three-dimensional system in the
following way.

Consider first the scaling volume distribution F(z) where
z=v/v(t), v(t) being the average grain volume at time ¢.
The distribution of grain radii, scaled to the average radius,
is G(x)dx=F(z)dz where

x=r/Fr=Bz'3,

Since by definition x=1 the constant B is given by
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%= f:leF(z)dz. 2)

Now consider a grain of radius r embedded in the three-
dimensional network. Statistically its inward flux J,,(r) is
found from the sum of fluxes leaving smaller grains,
aMo/R (R<r), times the probability of being in contact
with grains of this size somewhere in the network. Assuming
the grains are connected at random across their surfaces, this
latter probability is given by the proportion of the total sur-
face area available [R?/ [ 7°x2G(x)dx] times the number of
these grains in the system [G(R/r)]. Hence

rlfaM o R? __dR
Jin(r):'f R — G(R/T)—

0 sz x*G(x)dx "

0
aMao (r/F
=— f xG(x)dx,
rC Jo
with
C=f x2G(x)dx. 3)
0

Similarly J,,,(r) is found from the flux leaving grains of size
r, which is @ M o/r, into larger neighbors. The probability
of neighboring a larger grain of radius R is as above, so that

» oMo x?
Jout(r) = fr/;T E G(x)dx

aMo riF x2
= l—fo E,—G(x)dx

Thus the statistically averaged rate of growth of the grain
radius r in the network is

dr J J _aMo’ J‘r/f r+ X
E;_ in(r) out(r)— r 0 ;: X

C

G(x)dx——l].

4)

This equation is to be contrasted with Hillert’s growth equa-
tion (1). The difference between the equations is in the in-
ward flux term, which is size dependent in the current model.
Recalling the role played by the geometric factor &« we mul-
tiply by 4772 to find the equation of motion for grain vol-
ume v;

dv
& pgis
7 Du " (t)w(z),

where D= (487%)3aM o and

B? (=
w(z)=2z'? —C—f (2"P+y Py PF(y)dy—1]. ()
0
The continuity equation must be solved with this statisti-
cal growth rate to find the predicted distribution of grain
volumes. This equation is
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df(v,t) J dv
T z[f(”’”zz

=0, (6)

where f(v,t)dv is the number of grains between volumes v
and v +dv at time ¢. In the scaling state,

flv,n)= F(z),

v3(t)

where (1 is the total volume of the system and F(z) is of
course the scaling distribution function introduced earlier.
Since the growth is driven by surface tension the average
radius obeys the parabolic growth law in the scaling state.
Then v (¢)=kt>? and the continuity equation gives

d F = ” 2F(z)+ aF(z)
ZIWF ()= 55| 2F(2) +2
Integration then reveals
JeF(z")dz' =1
F(z)= T AW =z (7
with the numerical factor
2D

Equation (7) clearly requires self-consistent solution,
since w(z) is itself a functional of F(z). From the behavior
of the Potts model simulations, a first estimate is
F(z)~exp(—z). This function fits reasonably well over most
of the range, but underestimates the frequency of very small
grains. In fact, it shall be shown later that F(z)~z~ ' for
small z. Now with this first estimate the integrals on the right
of Eq. (7) may be calculated, using Egs. (2)—(5), leading to a
better approximation for the function F(z). This process is
then iterated until the exact solution is found. In practice
only three iterations are necessary, and in fact just one itera-
tion yields an estimate for F(z) that is almost indistinguish-
able from the exact solution. Now the factor A in Eq. (7) is
obtained numerically by the condition that

z= f zF(z)dz=1.
0

This is equivalent to requiring that the total volume of the
system is conserved. In the level of approximation used here
it transpires that A ~ 1.4, so that Eq. (8) gives the growth rate
for the average grain volume as

v(t)=(3.7aM ot)>?.

This can be compared to Hillert’s mean field growth rate
[12], 0(¢)=(1.03aM ot)*2. Therefore changing the growth
law from the mean field equation (1) to Eq. (4) makes the
average volume growth rate nearly seven times larger. It may
be possible to test this prediction experimentally.

Before the result for F(z) is shown, we consider the term
w(z) in the denominator of Eq. (7). If Aw(z)=z—1, then
F(z)=exp(—z) exactly. The difference between this and the
numerical values calculated from Eq. (5) thus indicates how
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FIG. 1. Aw(z) as calculated from Eq. (5). The variation with
iteration number / shows the convergence to the exact solution. The
straight line (z— 1) is also shown for comparison.

near the new approximation for F(z) is to the initial esti-
mate. The comparison is made in Fig. 1 where the variations
upon iteration are also given. It is clear that the numerical
values follow the trend of the straight line, implying that the
scaled distribution behaves in a similar manner to the expo-
nential decay. The most dramatic deviation occurs in the re-
gion of small z. This region will be discussed below.

The final distribution function calculated from Eq. (7) is
shown in Fig. 2, where it is compared to Hillert’s original
analytical solution of the mean field model [12] as well as
the inverse exponential function. Also shown in Fig. 2 are
the data from my own Potts model simulations. These simu-
lations used the so-called extended algorithm [14] whereby
spin-flip trials are performed by selecting nearest-neighbor
orientations. This differs from the standard procedure where
trials are performed by random selections from some Q,,,,

[ Potts Model

—— Equation (7)

& -=-- Hillert
0—\\ ....... exp(-z)

In(frequency)

-5

scaled size (2)

FIG. 2. The scaled volume distribution function as calculated
from Egq. (7), plotted on a logarithmic second axis. Hillert’s solution
[12], the inverse exponential, and the results from simulation are
shown for comparison.

FIG. 3. Log-log plots of the results from simulation and from
Eq. (7), to verify the power-law behavior of the distribution at small
volumes.

orientations [2,3]. The advantage of the former is that each
grain can be assigned a unique orientation so precluding
grain coalescence. However, both simulations lead to the
same scaling distribution and the reader is referred to [2,3]
for detailed analysis of the scaling state. It is clear that the
distribution calculated from Eq. (7) compares favorably with
the simulation data, particularly in the range 0<z<<2 where
about 88% of the grains are found. Our calculation shows
more marked deviation from the inverse exponential than
Hillert’s result giving an improved comparison with the data.

It is apparent from Fig. 2 that the results from Eq. (7)
display a high z cutoff in the manner of Hillert’s distribution,
whereas the Potts model simulations reveal a few grains with
scaled sizes greater than z=4. The inverse exponential does
not suffer from this cutoff and so would appear to be the best
description of the data over the whole range of grain sizes. It
is interesting to note that this exp(—z) function is the maxi-
mum entropy solution for the distribution with the con-
straints of space filling and normalization [15]. However, this
solution does not take into account the nature of the grain
growth mechanism, i.e., the surface energy minimization that
drives the evolution. For this reason this maximum entropy
result does not yield the correct form of the distribution at
very small grain sizes. It has been emphasized before [3] that
the Potts model data are not exponentially distributed at
small volumes in three dimensions. In contrast, the calcula-
tions presented here do give a good account of the data in
this important size range. I shall now demonstrate this by
focusing on the low z regime.

Equation (7) has a small volume divergence arising from
the fact that w(z) tends to zero with z. Is this behavior
acceptable? To answer this we must consider how the net-
work coarsens in time. The total number of grains in the
system at time ¢ is

n(t)=f0wf(v,t)dv.

Integration of the continuity equation (6) then shows that
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dn(t)
dt

«F(0)w(0).

But we know that w(z)~ —z! for small z since the grains

are shrinking by surface tension. This behavior is evident in
Hillert’s work [12] as well as in Eq. (5). Thus if the network
is coarsening steadily in a scaling state, F(z)~z 1 for
small z. From Eq. (7) it can be seen that the solution evalu-
ated here satisfies this condition. In Fig. 3 it is confirmed that
the Potts model data also show this behavior, verifying that it
is coarsening by surface tension effects. It is necessary that
the distribution obeys a power law for small grain volumes.
Therefore the maximum entropy solution exp(—z) cannot
provide a good explanation for the low z distribution and it
cannot be regarded as a satisfactory description of the grain
growth data.

In summary, the randomly connected bubble model has
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been applied to a three-dimensional network. Hillert’s theory
of grain growth has been modified to account for the shrink-
age of grains when neighbored by larger grains and their
growth when next to smaller ones. The grains have been
assumed to be positioned at random throughout the network.
I believe that this point is crucial to understanding why the
system displays scaling [8]. The random connectivity of the
grains is maintained during the network evolution since new
grains are brought into contact by the shrinkage of interme-
diate ones. The statistical growth laws are thus self-
perpetuating. The scaling distribution of grain sizes predicted
with this model shows good agreement with that found in
Potts model simulations, particularly in the range 0<z<<2
covering ~88% of the grains. This success suggests that we
are starting to achieve a good understanding of the micro-
structural evolution observed in polycrystalline materials.
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